국내 연구진이 세계 최초로 인공지능의 머신 러닝 기법을 활용해 조산의 위험을 예측한 연구결과를 발표했다.
그동안 조기진통 및 조기양막파수로 인해 조산이 발생하는 이유로 임신부 질내 유해한 박테리아의 상행 감염 때문이라는 연구가 세계적으로 많이 보고됐지만 이를 사전에 진단해 예방하기 위한 뚜렷한 방법은 없었다.
이에 이대목동병원 산부인과학교실 연구팀은 임신 중기 임신부의 질액을 채취, 이전의 선행연구를 통해 조산을 예측할 수 있는 후보균들의 정성적 및 정략적 평가를 시행했다. 또한 임신부의 조산 여부에 따라 어떠한 차이가 있는지 분석해 예측 모델을 만들었다. 단순히 균의 검출 유무로는 조산의 예측이 어려워, 후보 균들의 조합과 상대적인 비율을 이용해 '인공지능 기법'으로 예측을 위한 알고리즘을 만들기 위해서다.
이번 논문의 교신저자인 김영주 이대목동병원 산부인과 교수는 "이번 연구에서 밝혀진 대로 조산을 유발하는 다양한 원인들을 박테리아 위험 요소 모델에 접목시킨다면 더 좋은 예측 모델을 만들 수 있을 것"이라고 평가했다.
이와 관련해서 이대목동병원 산부인과학교실 연구팀은 새로운 바이오마커를 발굴하고 AI진단 알고리즘을 개발해 상용화를 진행하는 진단전문회사 ㈜디앤피바이오텍과 공동연구를 진행 중이다.
논문 1저자인 박선화 이대목동병원 산부인과 교수는 "조산율이 10% 내외라고는 하지만 실제로 상급종합병원인 이대목동병원에서 근무하다 보니, 조기진통, 조기양막파수의 증상으로 조산의 위험성이 높은 고위험 산모를 많이 치료했다"며 "미리 조산 원인을 알 수 있는 방법을 통해 예방적 조치를 취한다면 더욱 효과적인 진료를 할 수 있을 것"이라고 말했다.
장종호 기자 bellho@sportschosun.com
|
▶재테크 잘하려면? 무료로 보는 금전 사주